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Abstract: Kalman filter (KF) and its variants and extensions are wildly used for hydrologic prediction
in environmental science and engineering. In many data assimilation applications of Kalman filter
(KF) and its variants and extensions, accurate estimation of extreme states is often of great importance.
When the observations used are uncertain, however, KF suffers from conditional bias (CB) which
results in consistent under- and overestimation of extremes in the right and left tails, respectively.
Recently, CB-penalized KF, or CBPKF, has been developed to address CB. In this paper, we present
an alternative formulation based on variance-inflated KF to reduce computation and algorithmic
complexity, and describe adaptive implementation to improve unconditional performance. For
theoretical basis and context, we also provide a complete self-contained description of CB-penalized
Fisher-like estimation and CBPKF. The results from one-dimensional synthetic experiments for a
linear system with varying degrees of nonstationarity show that adaptive CBPKF reduces the root-
mean-square error at the extreme tail ends by 20 to 30% over KF while performing comparably to
KF in the unconditional sense. The alternative formulation is found to approximate the original
formulation very closely while reducing computing time to 1.5 to 3.5 times of that for KF depending
on the dimensionality of the problem. Hence, adaptive CBPKF offers a significant addition to the
dynamic filtering methods for general application in data assimilation when the accurate estimation
of extremes is of importance.

Keywords: state estimation; extremes; conditional bias; Kalman filter; adaptive filtering

1. Introduction

Streamflow prediction is subject to uncertainties from multiple sources. These include
uncertainties in the input (e.g., mean areal precipitation (MAP) and mean areal potential
evapotranspiration (MAPE)), hydrologic model uncertainties, and the uncertainties in the
initial conditions. With climate change and rapid urbanization, the uncertainty in the input
and parametric uncertainties will increase; thus, reducing them has become increasingly
challenging. Recently, data assimilation is widely used to reduce the uncertainty in initial
conditions [1,2].

In many data assimilation applications in hydrologic predictions, Kalman filter (KF)
and its variants and extensions are widely used to fuse observations with model predictions
in a wide range of applications [3–23]. In geophysics and environmental science and
engineering, often the main objective of data assimilation is to improve the estimation and
prediction of states in their extremes rather than in normal ranges. In hydrologic forecasting,
for example, the accurate prediction of floods and droughts is far more important than that
of streamflow and soil moisture in normal conditions. Because KF minimizes unconditional
error variance, its solution tends to improve the estimation near median where the state
of the dynamic system resides most of the times while often leaving significant biases in
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the extremes. Such conditional biases (CB) [24] generally result in consistent under- and
overestimation of the true states in the upper and lower tails of the distribution, respectively.
To address CB, CB-penalized Fisher-like estimation and CB-penalized KF (CBPKF) [25]
have recently been developed which jointly minimize error variance and expectation of
the Type-II CB squared for the improved estimation and prediction of extremes. The Type-
II CB, defined as E

[
X̂
∣∣X = x

]
− x, is associated with failure to detect the event where x

denotes the realization of X where X, X̂ and x̂ denote the unknown truth, the estimate,
and the realization of X̂, respectively [26]. The original formulation of CBPKF, however,
is computationally extremely expensive for high-dimensional problems. Additionally,
whereas CBPKF improves performance in the tails, it deteriorates performance in the
normal ranges. In this work, we approximate CBPKF with forecast error covariance-
inflated KF, referred to hereafter as the variance-inflated KF (VIKF) formulation, as a
computationally less expensive and algorithmically simpler alternative, and implement
adaptive CBPKF to improve unconditional performance.

Elements of CB-penalized Fisher-like estimation have been described in the forms of
CB-penalized indicator cokriging for fusion of predicted streamflow from multiple models
and observed streamflow [27], CB-penalized kriging for spatial estimation [28] and rainfall
estimation [29], and CB-penalized cokriging for fusion of radar rainfall and rain gauge
data [30]. The original formulation of CBPKF have been described in [25], respectively.
Its ensemble extension, CB-penalized ensemble KF, or CEnKF, is described in [31] in the
context of ensemble data assimilation for flood forecasting. In this paper, we provide in the
context of data assimilation a complete self-contained description of CBPKF for theoretical
background for the alternative formulation and adaptive implementation. Whereas CBPKF
was initially motivated for environmental and geophysical state estimation and prediction,
it is broadly applicable to a wide range of applications for which improved performance in
the extremes is desired. This paper is organized as follows. Sections 2 and 3 describe CB-
penalized Fisher-like solution and CBPKF, respectively. Section 4 describes approximation
of CBPKF. Section 5 describe the evaluation experiments and results, respectively. Section 6
describes adaptive CBPKF. Section 7 provides the conclusions.

2. Conditional Bias-Penalized Fisher-like Solution

As in Fisher estimation [32], the estimator sought for CB-penalized Fisher-like es-
timation is X∗ = WZ where X∗ denotes the (m × 1) vector of the estimated states, W
denotes the (m × (n + m)) weight matrix, and Z denotes the ((n + m) × 1) augmented
observation vector. In the above, n denotes the number of observations, m denotes the
number of state variables, and (n + m) represents the dimensionality of the augmented
vector of the observations and the model-predicted states to be fused for the estimation of
the true state X. The purpose of augmentation is to relate directly to CBPKF in Section 3
without introducing additional notations. Throughout this paper, we use regular and bold
letters to differentiate the non-augmented and augmented variables, respectively. The
linear observation equation is given by:

Z = HX + V (1)

where X denotes the (m × 1) vector of the true state with E[X] = MX and Cov[X,XT] = ΨXX,
H denotes the ((n + m) ×m) augmented linear observation equation matrix, and V denotes
the ((n + m) × 1) augmented zero-mean observation error vector with Cov[V, VT] = R.
Assuming independence between X and V, we write the Bayesian estimator [30] for X, or
X∗, as:

X∗ = MX + W(Z−HMx) (2)

The error covariance matrix for X∗, E
[
(X− X∗)(X− X∗)T

]
, is given by:

ΣEV = (I−WH)ΨXX(I−WH)T + WRWT (3)
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With Equation (2), we may write Type-II CB as:

X− E[X∗|X] = (X−MX)−WE[(Z−HMx)|X] (4)

The observation equation for Z is obtained by inverting Equation (1):

X = GTZ−GTV (5)

The (mxn) matrix, GT, in Equation (5) is given by:

GT =
(

UTH
)−1

UT (6)

where UT is some (m × (n + m)) nonzero matrix. Using Equation (5) and the identity,
ΨZZ = HΨXXHT + R, we may write the Bayesian estimate for E[Z|X ] in Equation (4) as:

Ê[Z|X ] = HMX + C(X−MX) (7)

where
C = (HΨXXHT + R)GT[G(HΨXXHT + 2R)GT]−1 (8)

Equations (7) and (8) state that the Bayesian estimate of Z given X is given by HX if
the a priori state error covariance ΨXX is noninformative or there are no observation errors,
but by the average of the a priori mean MX and the observed true state X if the a priori
ΨXX is perfectly informative or observations are information-less.

With Equation (4), we may write the quadratic penalty due to Type-II CB as:

ΣCB = E[(X− EX∗ [X∗
∣∣∣X]) (X− EX∗ [X∗|X]) T ] = (I −WC)ΨXX(I −WC)T (9)

where I denotes the (m × m) identity matrix. Combining ΣEV in Equation (3) and ΣCB
in Equation (9), we have the apparent error covariance, Σa, which reflects both the error
covariance and Type-II CB:

Σa = (I −WH)ΨXX(I −WH)T + WRWT + α(I −WC)ΨXX(I −WC)T (10)

where α denotes the scaler weight given to the CB penalty term. Minimizing Equation (10)
with respect to W, or by direct analogy with the Bayesian solution [32], we have:

W = ΨXXĤT
[ĤΨXXĤT

+ Λ]−1 (11)

The modified structure matrix ĤT and observation error covariance matrix Λ in
Equation (11) are given by:

ĤT
= HT + αCT (12)

Λ = R + α(1− α)CΨXXCT − αHΨXXCT − αCΨXXHT (13)

Using Equation (11) and the matrix inversion lemma [33], we have for Σa and X∗ in
Equations (10) and (2), respectively:

Σa = αΨXX +
[
ĤΛ−1ĤT

+ Ψ−1
XX

]−1
(14)

X∗ =
[
ĤT

Λ−1Ĥ + Ψ−1
XX

]−1{
ĤT

Λ−1Z + Ψ−1
XX MX

}
+ ∆ (15)
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where ∆ = αΨXXĤT
[ĤΨXXĤT

+ Λ]−1CMX. To render the above Bayesian solution to a
Fisher-like solution, we assume no a priori information in X and let Ψ−1

XX in the brackets in
Equations (14) and (15) vanish:

Σa = B[ĤΛ−1ĤT
]−1 (16)

X∗ = [ĤT
Λ−1Ĥ]−1ĤT

Λ−1Z + ∆ (17)

where the scaling matrix B is given by B = αΨXXĤT
Λ−1Ĥ + I. To obtain the estimator of

the form, X∗ = WZ, we impose the unbiasedness condition, E[X∗] = X, or equivalently,
WH = I. The above condition is satisfied by replacing [ĤT

Λ−1Ĥ]−1 with [ĤT
Λ−1H]−1 and

dropping ∆ in Equation (17):
Σa = B[ĤΛ−1HT]−1 (18)

X∗ = [ĤT
Λ−1H]−1ĤT

Λ−1Z (19)

Finally, we obtain from Equation (3) the error covariance, ΣEV , associated with X∗ in
Equation (19):

ΣEV = WRWT = [ĤT
Λ−1H]−1ĤT

Λ−1RΛ−1Ĥ[ĤT
Λ−1H]−1 (20)

Note that, if α = 0, we have ĤT
= H and Λ = R, and hence the CB-penalized Fisher-like

solution, Equations (19) and (20), is reduced to the Fisher solution [32].

3. Conditional Bias-Penalized Kalman Filter

CBPKF results directly from decomposing the augmented matrices and vectors in
Equations (19) and (20) as KF does from the Fisher solution [32]. The CBPKF solution,
however, is not very simple because the modified observation error covariance matrix,
Λ, is no longer diagonal. An important consideration in casting the CB-penalized Fisher-
like solution into CBPKF is to recognize that CB arises from the error-in-variable effects
associated with uncertain observations [34], and that the a priori state, represented by the
dynamical model forecast, is not subject to CB. We therefore apply the CB penalty to the
observations only and reduce C in Equation (8) to CT =

(
CT

1,k CT
2,k

)
=
(

CT
1,k 0

)
. Separating

the observation and dynamical model components in ĤT and Λ via the matrix inversion
lemma, we have:

ĤT
=
(

ĤT
1,k I

)
(21)

Λ =

[
Λ11,k Λ12,k
Λ21,k Λ22,k

]
(22)

where
ĤT

1,k = HT
k + αCT

1,k (23)

Λ11,k = Rk + α(1− α)C1,kΨXXCT
1,k − αHkΨXXCT

1,k − αC1,kΨXX HT
k (24)

Λ12,k = −αC1,kΨXX (25)

Λ21,k = ΛT
12,k (26)

Λ22,k = Σk|k−1 (27)

In the above, Hk denotes the (n ×m) observation matrix, and Rk denotes the (n × n)
observation error covariance matrix. To evaluate the (m × n) matrix, C1,k, it is necessary to
specify UT in Equation (6). We use UT = HT which ensures invertibility of UTH, but other
choices are also possible. We then have for CT

1,k:

C1,k =
[(

HkΨXX HT
k + Rk

)
G1,k + HkΨXXG2,k

]
L−1

k (28)



Hydrology 2022, 9, 35 5 of 14

where
GT

2,k =
(

HT
k Hk + I

)−1
(29)

GT
1,k = GT

2,k HT
k (30)

Lk = GT
2,k

[
HT

k

(
HkΨXX HT

k + 2Rk

)
Hk + HT

k HkΨXX + ΨXX HT
k Hk + ΨXX + 2Σk|k−1

]
G2,k. (31)

Expanding W in Equation (11) with Λ−1 = Γ =

[
Γ11,k Γ12,k
Γ21,k Γ22,k

]
, we have:

W =
[
ĤT

Λ−1H
]−1

ĤT
Λ−1 = ( 1,k Hk + 2,k)

−1( 1,k 2,k) (32)

In Equation (32), the (m × n) and (m × m) weight matrices for the observation and
model prediction,ω1,k andω2,k, respectively, are given by:

1,k = ĤT
1,kΓ11,k + Γ21,k (33)

2,k = ĤT
1,kΓ12,k + Γ22,k (34)

where
Γ22,k =

[
Λ22,k −Λ21,kΛ−1

11,kΛ12,k

]−1
(35)

Γ11,k = Λ−1
11,k + Λ−1

11,kΛ12,kΓ22,kΛ21,kΛ−1
11,k (36)

Γ12,k = −Λ−1
11,kΛ12,kΓ22,k (37)

The apparent CBPKF error covariance, which reflects both ΣEV and ΣCB, is given by
Equation (18) as:

Σa,k|k = αΣk|k−1 + [ 1,k Hk + 2,k]
−1 (38)

The CBPKF error covariance, which reflects ΣEV only, is given by Equation (20) as:

Σk|k = [ 1,k Hk + 2,k]
−1
(

1,kRk
T
1,k + 2,kΣk|k−1

T
2,k

)
[ 1,k Hk + 2,k]

−1 (39)

Because CBPKF minimizes Σa,k|k rather than Σk|k, it is not guaranteed that Equation (39)
satisfies Σk|k ≤ Σk|k−1 a priori. If the above condition is not met, it is necessary to reduce α
and repeat the calculations. If α is reduced all the way to zero, CBPKF collapses to KF. The
CBPKF estimate may be rewritten into a more familiar form:

X̂k|k = [ 1,k Hk + 2,k]
−1[ 1,kZk + 2,kX̂k|k−1] = X̂k|k−1 + Kk[Zk − HkX̂k|k−1] (40)

In Equation (40), Zk denotes the (n × 1) observation vector, and the (m × n) CB-
penalized Kalman gain, Kk, is given by:

Kk = [ 1,k Hk + 2,k]
−1

1,k (41)

To operate the above as a sequential filter, it is necessary to prescribe ΨXX and α. An
obvious choice for ΨXX , i.e., the a priori error covariance of the state, is Σk|k−1. Specifying
α requires some care. In general, a larger α improves accuracy over the tails but at the
expense of increasing unconditional error. Too small an αmay not affect large enough CB
penalty in which case the CBPKF and KF solutions would differ a little. Too large an α, on
the other hand, may severely violate the Σk|k ≤ Σk|k−1 condition in which case the filter
may have to be iterated at an additional computational expense with successively reduced
α. A reasonable strategy for reducing α is αi = cαi−1, i = 1, 2, 3, . . ., with 0 < c < 1 where αi
denotes the value of α at the i-th iteration [24,29]. For high-dimensional problems, CBPKF
can be computationally very expensive. Whereas KF requires solving an (m × n) linear
system only once per updating or fusion cycle, CBPKF additionally requires solving two
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(m ×m) linear systems (for C1,k. and Γ22), and a (n × n) system (for Λ11), assuming that
the structure of the observation equation does not change in time (in which case GT

2,k in
Equation (29) may be evaluated only once). To reduce computation, below we approximate
CBPKF with KF by inflating the forecast error covariance.

4. VIKF Approximation of CBPKF

The main idea behind this simplification is that, if the gain for the CB penalty, C,
in Equation (10) can be linearly approximated with H, the apparent error covariance Σa
becomes identical to ΣEV in Equation (3) but with ΨXX inflated by a factor of 1 + α:

Σ(1+α) = (I −WH)(1 + α)ΨXX(I −WH)T + WR(1+α)W
T (42)

where R(1+α) =

[
R 0
0 (1 + α)ΨXX

]
. The KF solution for Equation (42) is identical to the

standard KF solution but with Σk|k−1 replaced by (1 + α)Σk|k−1:

X̂k|k = [HT
k R−1

k Hk + {(1 + α)Σk|k−1}−1]−1[HT
k R−1

k Zk +
{
(1 + α)Σk|k−1

}−1
X̂k|k−1] (43)

With WH=I in Equation (43) for the VIKF solution, we have Σ(1+α) = WR(1+α)W
T for

the apparent filtered error variance of X̂k|k in Equation (42). The error covariance of X̂k|k,
Σk|k, is given by Equation (3) as:

Σk|k = WRWT =
[
HTR−1

(1+α)
H
]−1

HTR−1
(1+α)

RR−1
(1+α)

H
[
HTR−1

(1+α)
H
]−1

= Σ(1+α),k|kΣ−1
(1+α)2,k|k

Σ(1+α),k|k
(44)

In Equation (44), the inflated filtered error covariance, Σβ,k|k, where β denotes the
multiplicative inflation factor, is given by:

Σβ,k|k = βΣk|k−1 − βΣk|k−1HT
k

[
HkβΣk|k−1HT

k + Rk

]−1
HkβΣk|k−1

=

[
HT

k R−1
k Hk +

(
βΣk|k−1

)−1
]−1 (45)

Computationally, the evaluation of Equations (43) and (44) requires solving two
(m × n) and a (m ×m) linear systems. As in the original formulation of CBPKF, iterative
reduction of α is necessary to ensure Σk|k ≤ Σk|k−1.

The above approximation assumes that the CB penalty, ΣCB, is proportional to the
error covariance, ΣEV . To help ascertain how KF, CBPKF and the VIKF approximation
may differ, we compare in Table 1 their analytical solutions for gain κk, and filtered error
variance σ2

k|k for the 1D case of m = n = 1. The table shows that the VIKF approximation
and CBPKF are identical for the 1D problem except that the CB penalty for CBPKF is twice
as large as that for the VIKF approximation. To visualize the differences, Figure 1 shows κk
and σ2

k|k for KF, the VIKF approximation and CBPKF for the three cases of σ2
k|k−1 = 1 and

σ2
Z = 1 (left), σ2

k|k−1 = 1 and σ2
Z = 4 (middle), and σ2

k|k−1 = 4 and σ2
Z = 1 (right). For all

cases, we set h to unity and varied α from 0 to 1. The figure indicates that, compared to KF,
the VIKF approximation and CBPKF prescribe appreciably larger gains, that the increase
in gain is larger for larger α, and that the CBPKF gain is larger than the gain in the VIKF
approximation for the same value of α. The figure also indicates that, compared to KF error
variance, CBPKF error variance is larger, and that the increase in error variance is larger for
larger α. Note that the differences between the KF and CBPKF solutions are the smallest for
σ2

k|k−1 > σ2
Z, a reflection of the diminished impact of CB owing to the comparatively smaller

uncertainty in the observations. The above development suggests that one may be able to
approximate CBPKF very closely with the VIKF-based formulation by adjusting α in the
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latter. Below, we evaluate the performance of CBPKF relative to KF and the VIKF-based
approximation of CBPKF.

Table 1. Comparison of gain and filtered error variance among KF, the VIKF approximation, and CBPKF.

Gain, κk Filtered Error Variance, σ2
k|k

KF hσ2
k|k−1

h2σ2
k|k−1+σ2

Z

σ2
Z

h2σ2
k|k−1+σ2

Z
σ2

k|k−1

VIKF approx. h(1+α)σ2
k|k−1

h2(1+α)σ2
k|k−1+σ2

Z

{
(1+α)2h2σ2

k|k−1+σ2
Z

}
σ2

Z{
(1+α)h2σ2

k|k−1+σ2
Z

}2 σ2
k|k−1

CBPKF h(1+2α)σ2
k|k−1

h2(1+2α)σ2
k|k−1+σ2

Z

{
(1+2α)2h2σ2

k|k−1+σ2
Z

}
σ2

Z{
(1+2α)h2σ2

k|k−1+σ2
Z

}2 σ2
k|k−1
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Z = 1 (left), σ2
k|k−1 = 1 and σ2

Z = 4 (middle), σ2
k|k−1 = 4 and σ2

Z = 1 (right).

5. Evaluation and Results

For comparative evaluation, we carried out the synthetic experiments of [25]. We
assume the following linear dynamical and observation models with perfectly known
statistical parameters:

Xk = Φk−1Xk−1 + Wk−1 (46)

Zk = HkXk + Vk (47)

where Xk and Xk−1 denote the state vectors at time steps k and k − 1, respectively, Φk−1 de-
notes the state transition matrix at time step k− 1 assumed as Φk−1 = ϕk−1 I, Wk−1 denotes
the white noise vector, wj,k−1 ∼ N

(
0, σ2

wk−1

)
, j = 1, . . . ,m, with Qk−1 = E

[
Wk−1WT

k−1

]
,

and Vk denotes the observation error vector, vi,k ∼ N
(

0, σ2
vk

)
, I = 1, . . . , n. The number of

observations, n, is assumed to be time-invariant. The observation errors are assumed to be
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independent among themselves and of the true state. To assess comparative performance
under widely varying conditions, we randomly perturbed ϕk−1, σw,k−1 and σv,k above
according to Equations (48) through (50) below, and used only those deviates that satisfy
the bounds:

ϕ
p
k−1 = ϕk−1 + γϕεϕ 0.5 ≤ ϕ

p
k−1 ≤ 0.95 (48)

σ
p
w,k−1 = σw,k−1 + γwεw σ

p
w,k−1 ≥ 0.01 (49)

σ
p
v,k = σv,k + γvεv σ

p
v,k ≥ 0.01 (50)

In the above, the superscript p signifies that the variable is a perturbation, εϕ εw
and εv denote the normally distributed white noise for the respective variables, and
γϕ γw and γv denote the standard deviations of the white noise added to ϕk−1, σw,k−1
and σv,k, respectively. The parameter settings (see Table 1) are chosen to encompass less
predictable (small ϕk−1) to more predictable (large ϕk−1) processes, certain (small σw,k−1)
to uncertain (large σw,k−1) model dynamics, and more informative (small σv,k) to less
informative (large σv,k) observations. The bounds for ϕ

p
k−1 in Equation (48) are based on the

range of lag-1 serial correlation representing moderate to high predictability where CBPKF
and KF are likely to differ the most. The bounding of the perturbed values σ

p
w,k−1 and σ

p
v,k

in Equations (49) and (50), respectively, is necessary to avoid the observational or model
prediction uncertainty becoming unrealistically small. Very small σ

p
w,k−1 and σ

p
v,k render the

information content of the model prediction, Σk|k−1, and the observation, Zk, respectively,
very large, and hence keep the filters operating in unrealistically favorable conditions for
extended periods of time. We then apply KF, CBPKF, and the VIKF approximation to obtain
X̂k|k and Σk|k, and verify them against the assumed truth. To evaluate the performance of
CBPKF relative to KF, we calculate percent reduction in root-mean-square error (RMSE) by
CBPKF over KF conditional on the true state exceeding some threshold between 0 and the
largest truth.

Figure 2 shows the percent reduction in RMSE by CBPKF over KF for Cases 1 (left),
5 (middle) and 9 (right) representing Groups 1, 2 and 3 in Table 1, respectively. The three
groups differ most significantly in the variability of the dynamical model error, γw, and
may be characterized as nearly stationary (Group 1), nonstationary (Group 2), and highly
nonstationary (Group 3). The range of α values used is [0.1, 1.2] with an increment of 0.1.
The numbers of state variables, observations, and updating cycles used in Figure 2 are
1, 10, and 100,000 for all cases. The dotted line at 10% reduction in the figure serves as a
reference for significant improvement. The figure shows that, at the extreme end of the
tail, CBPKF with α of 0.7, 0.6, and 0.5 reduces RMSE by about 15, 25, and 30% for Cases
1, 5 and 9, respectively, but at the expense of increasing unconditional RMSE by about
5%. The general pattern of reduction in RMSE for other cases in Table 1 is similar within
each group and is not shown. We only note here that larger variability in observational
uncertainty (i.e., larger γv) reduces the relative performance of CBPKF somewhat, and that
the magnitude of variability in predictability (i.e., γϕ) has a relatively small impact on the
relative performance.

It was seen in Table 1 that the VIKF approximation is identical to CBPKF for m = n = 1
but for the multiplicative scaler weight for the CB penalty. Numerical experiments indicate
that, whereas the above relationship does not hold for other m or n, one may very closely
approximate CBPKF with the VIKF-based formulation by adjusting α. For example, the
VIKF approximation with α increased by a factor of 1.25 to 1.90 differ from CBPKF only by
1% or less for all 12 cases in Table 2 with m = 1 and n = 10. The above findings indicate that
the VIKF approximation may be used as a computationally less expensive alternative for
CBPKF. Table 3 compares the CPU time among KF, CBPKF, and the VIKF approximation
for six different combinations of m and n based using Intel(R) Xeon(R) Gold 6152 CPU @
2.10 GHz. The computing time is reported in multiples of the KF’s. Note that the original
formulation of CBPKF quickly becomes extremely expensive as the dimensionality of the
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problem increases, whereas the CPU time of the VIKF approximation stays under 3.5 times
that of KF for the size of the problems considered.
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Table 2. Parameter settings for the 12 cases considered.

Group Case σw,k−1 γw σv,k γv ϕk−1 γϕ

1

1 0.1 0.01 1.5 0.4 0.7 0.1

2 0.1 0.01 1.5 0.4 0.7 0.8

3 0.1 0.01 1.5 1.2 0.7 0.1

4 0.1 0.01 1.5 1.2 0.7 0.8

2

5 0.1 0.1 1.5 0.4 0.7 0.1

6 0.1 0.1 1.5 0.4 0.7 0.8

7 0.1 0.1 1.5 1.2 0.7 0.1

8 0.1 0.1 1.5 1.2 0.7 0.8

3

9 0.1 0.2 1.5 0.4 0.7 0.1

10 0.1 0.2 1.5 0.4 0.7 0.8

11 0.1 0.2 1.5 1.2 0.7 0.1

12 0.1 0.2 1.5 1.2 0.7 0.8

Table 3. Comparison of computing time among KF, CBPKF, and VIKF approximation.

Dimensionality Normalized Computing Time

m n KF CBPKF VIKF approx.

1 10 1 5.23 1.51

1 40 1 18.41 2.74

5 10 1 6.44 1.67

5 40 1 24.03 2.88

10 10 1 14.27 2.03

10 40 1 27.96 3.46

If the filtered error variance is unbiased, one would expect the mean of the actual error
squared associated with the variance to be approximately the same as the variance itself.
To verify this, we show in Figure 3 the filtered error variance vs. the actual error squared
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for KF (left), the VIKF approximation (middle), and CBPKF (right) for all ranges of filtered
error variance. For reference, we plot the one-to-one line representing the unbiased error
variance conditional on the magnitude of the filtered error variance and overlay the local
regression fit through the actual data points using the R package locfit [35]. The figure
shows that all three provide conditionally unbiased estimates of filtered error variance as
theoretically expected, and that the VIKF approximation and CBPKF results are extremely
similar to each other.
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6. Adaptive CBPKF

Whereas CBPKF or the VIKF approximation significantly improves the accuracy of
the estimates over the tails, it deteriorates performance near the median. Figure 2 suggests
that if α can be prescribed adaptively such that a small/large CB penalty is affected when
the system is in the normal/extreme state, the unconditional performance of CBPKF would
improve. Because the true state of the system is not known, adaptively specifying α is
necessarily an uncertain proposition. There are, however, certain applications in which
the normal vs. extreme state of the system may be ascertained with higher accuracy
than others. For example, the soil moisture state of a catchment may be estimated from
assimilating precipitation and streamflow data into hydrologic models [36–41]. If α is
prescribed adaptively based on the best available estimate of the state of the catchment,
one may expect improved performance in hydrologic forecasting. In this section, we apply
adaptive CBPKF in the synthetic experiment and assess its performance. An obvious
strategy for adaptively filtering is to parameterize α in terms of the KF estimate (i.e., the
CBPKF estimate with α = 0) as the best guess for the true state. The premise of this strategy
is that, though it may be conditionally biased, the KF estimate fuses the information
available from both the observations and the dynamical model, and hence best captures
the relationship between α and the departure of the state of the system from median. A
similar approach has been used in fusing radar rainfall data and rain gauge observations
for multisensor precipitation estimation in which an ordinary cokriging estimate was used
to prescribe α in CB-penalized cokriging [30].

Necessarily, the effectiveness of the above strategy depends on the skill of the KF
estimate; if the skill is very low, one may not expect significant improvement. Figure 2
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suggests that, qualitatively, α should increase as the state becomes more extreme. To that
end, we employed the following model for time-varying α:

αk = γ‖X̂KF
k|k‖ (51)

where αk denotes the multiplicative CB penalty factor for CBPKF at time step k, ‖X̂KF
k|k‖

denotes some norm of the KF estimate at time step k, and γ denotes the proportionality
constant. Figure 4(left) shows the RMSE reduction by adaptive CBPKF over KF with
αk = γ

∣∣∣X̂KF
k|k

∣∣∣ for the 12 cases in Table 2 m = 1 and n = 10. The γ values used were 3.0, 1.0,
and 0.5 for Groups 1, 2, and 3 in Table 2, respectively. The figure shows that adaptive CBPKF
performs comparably to KF in the unconditional sense while substantially improving
performance in the tails. The rate of reduction in RMSE with respect to the increasing
conditioning truth, however, is now slower than that seen in Figure 2 due to the occurrences
of incorrectly specified α. To assess the uppermost bound of the feasible performance
of adaptive CBPKF, we also specified α with perfect accuracy under Equation (51) via
αk = γ|Xk| where Xk denotes the true state. The results are shown in Figure 4(right) for
which the γ values used were 3.0, 1.5, and 1.0 for Groups 1, 2, and 3 in Table 2, respectively.
The figure indicates that adaptive CBPKF with perfectly prescribed α greatly improves
performance, even outperforming KF in the unconditional sense. Figure 4 suggests that, if α
can be prescribed more accurately with additional sources of information, the performance
of adaptive CBPKF may be improved beyond the level seen in Figure 4(left). Finally, we
show in Figure 5 the example scatter plots of the KF (black) and adaptive CBPKF (red)
estimates vs. truth. They are for Cases 1 and 9 in Table 2 representing Groups 1 and 3,
respectively. It is readily seen that the CBPKF significantly reduces CB in the tails while
keeping its estimates close to the KF estimates in normal ranges.
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7. Conclusions

Conditional bias-penalized Kalman filter (CBPKF) has recently been developed to
improve the estimation and prediction of extremes. The original formulation, however,
is computationally very expensive, and deteriorates performance in the normal ranges
relative to KF. In this work, we present a computationally less expensive alternative based
on the variance-inflated KF (VIKF) approximation, and improve unconditional performance
by adaptively prescribing the weight for the CB penalty. For evaluation, we carried out
synthetic experiments using linear systems with varying degrees of dynamical model
uncertainty, observational uncertainty, and predictability. The results indicate that the
VIKF-based approximation of CBPKF provides a computationally much less expensive
alternative to the original formulation, and that adaptive CBPKF performs comparably
to KF in the unconditional sense while improving the estimation of extremes by about
20 to 30% over KF. It is also shown that additional improvement may be possible by
improving adaptive prescription of the weight to the CB penalty using additional sources
of information. The findings indicate that adaptive CBPKF offers a significant addition to
the dynamic filtering methods for general application in data assimilation and, in particular,
when or where the estimation of extremes is of importance. The findings in this work are
based on idealized synthetic experiments that satisfy linearity and normality. Additional
research is needed to assess performance for non-normal problems and for nonlinear
problems using the ensemble extension [31], and to prescribe the weight for the CB penalty
more skillfully.
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